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ON THE STABILITY OF STATIONARY MOTIONS OF BODIES WITH 
SPHERI~L INERTIA TENSOR IN A NEWTONIAN FORCE FIELD* 

R.S. SULIKASRVILI 

The problem of the motion of en unconstrained rigid body with a spherical 
inertia tensor in a Newtonian force field is considered. Stationary 
motions are determined for the homogeneous bodies of simplest form (a 
cube, cone, and cylinder) and their stability is investigated. The 
motions determined and their stability are in full agreement with the 
analogous results obtained in /l/**(**In the third paragraph of the 
precis of /I/ the word "apex" should be replaced by "base"*) for the 
stationary motions of bodies clamped at the centre of mass. 

1. Let us introduce a fixed system of coordinates O&& with origin at the centre of 
attraction 0, and a moving system of coordinates Gxlx,xs with origin at the centre of mass G 
of the body and its axes directed along its principal central axes of inertia. Let us also 
introduce the system of coordinates OZrl6 obtained from OE0r1050 by rotating the latter 
about the axis Oq0 = On ..by an angle CT. We denote the unit vectors of the 
a,@,~; af, @t,yi (i = 1,2, 3) are their projections on the xI axes. 

E,% 5 axes by 

The position of the body in the fixed system of coordinate axes will be characterized 
by the angle a, the coordinates E,T), 5 of its centre of mass, and by the direction cosines 
at,pt,rt(i = 1,2,'3). Let m,be the mass of the centre of attraction, m the mass of the body, f 
the gravitational constant, )A = fm,, A, 13,C the principal central moments of inertia of the 
body, and Ui the projections on the xi axes of the instantaneous velocity vector of the body 
in its motion relative to the .OEnE system. The variables s, E,n, 5 are redundant, and we 
shall therefore assume that t=O, i.e. that the centre of mass of the body lies in the On< 
plane which rotates with an angular velocity of u'= &/& about the CR axis. 

The kinetic energy T of the body is given by the expression 

where cp,*,8 are Euler angles determining the orientation of the body relative to the O&)5 
axes. 

The equations of motion of the body can be written in the form of Lagrange equations, 
using the variables q, f, [r. cp,ti.tl as the generalized coordinates ,7r. The equations admit of 
the energy integral T + n = const =*h, where n is the potentialenergyofNewtonianattraction, 
and a cyclic integral expressing the constancy of the projectionof the angular momentum of 
the body on the On axis. The latter integral yields the following expression for the cyclic 
velocity: 

So’ = K - 2 (AN& + Bw,B, -k Co&), K = const (f-f) 

S = mP + (A$2 -t BfbB + @la) 

where S is the moment of inertia of thebodyabout the Oq axis. 
Ignoring the cyclic coordinate u, we construct the Routh function 

&, = L - uoK = RP f R, - W,, W, = KV(2.S) + II 

Using Routh's theorem we can reduce the problem of determining the stationary motions of 
the body and the analysis of their stability to the study of the stationary values of the 
modified potential energy Wo. 

Let t = Kl(2h) be the characteristic time, R = [Ka/(2m,h)l’/s the characteristic size of 
the orbit, E= [(A +B f C)/(3m)l’Js the characteristic dimension of the bodies and l/R = E a 
small parameter. We introduce the dimensionless variables and parameters as follows: 
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M = mW, t = o’, E = Rg’, q = Rq', ; = R5’ 
~i = Li’ = ERXi’ (i = 1, 2, 3) 

and henceforth omit the primes. 
We have the following expression (in dimensionless form) for the function Fl : 

II=-p i -f$=-+- (j F(E)dm 
(W (.w 

A = R [(5 + ~b,)’ + (q + eb# + (5 + Eb,)21”8 

bb = X,til + X,63 + X&. 6 = CC, f$ y; F (8) = RlA 

Expanding n in powers of ~,we obtain 

n=-~(zo+Er,+~z,+$z,+~z~+ . ..) (1.2) 

Zj= \ Fj(O)dm (j=O, 1, 2, 3, 4) 

(h 

Below we shall give the values of the coefficients in (1.2) for a cube, cone and cylinder. 

2. We have, for a body in the form of a cube (the Xi axes are parallel to the cube 
(for the dimensionless form c=l/6) faces) with edge a 

Then we obtain the following expression for the functionW,: 

The problem of determining the stationary motions of the body reduces to that of deter- 
mining an unconditional extremum of the function W = W,, + hql where h is the undetermined 
Lagrange multiplier. 

W,=--[llf+$ei]+n, 

n, = KV(ZS), r = (9" + <a)"$, Q = @f/R 

k = (31 - 35x)/960, x = u14 + nz4 + us4 

Ui = (1IBi + tYi)ir ti = I, 27 3) 

$1 = Ul + US2 + u8* - 1 = 01 

The equations of stationary motions have the form 

-f_+Eq($ + -p)=o (2.1) 

zg = &($ + +El) - 2gLo 

s Z2h,Ui3 + 2hui=0 @=I, 2, 3), h,= $$ 
I 

and admit of the following families of solutions: 

rl = 0, 5 = c,, = N (1 + D), u1 = 0, ~2 = &l/f/2* 

US = *I .v'Z (123) 

,, =O, 5 = c,, = N(1 + 16D), u = uz = 0, US =&I 
(123) 

N = RK'J(yM=), D = 72A%'/(7M2) 

(2.2) 

(2.3) 

(2.4) 

Here h has the following corresponding values for (2.2)-(2.4): --'l&J?; --h,E; --‘IshoE. 
Eqs.(2.1) have no other.solutions. 
The solutions (2..2)-(2.4) correspond to the relative equilibria of the body in a circular 

orbit of radius 50, whose centre of mass moves with constant orbital angular velocity o0 - 

US, (see (1.1)) given by the condition 

%50" = pR-’ (1 - ke4i&,4) 
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(the zero subscript means that the corresponding quantity is calculated for the solutions 
(2.2)-(2.4)). 

For the solutions (2.2) the radius vector OG = 50 of the centre of attraction is parallel 
to a diagonal of one of the faces of the cube, for (2.3) it is parallel to one of the sides, 
and for (2.4) it is directed along one of the diagonals of the cube. 

Let us investigate the stability of the motions (2.2)-(2.4). We introduce the notation 

The remaining partial second-order derivatives are equal to zero. 
Let us denote by (VW) the value of the quadratic form WV on 

i+$,=o. The eigenvalues of the quadratic form WV can be called 
efficients, and the number of negative roots the degree of instability 

X). 
The values of a18 are the same for all solutions (2.2)-(2.4) 

a 2p = Mooa (4M5, - S,)/So - 2E/5eS + 0 (9) 

and the values of the other ail differ. 
For the solutions (2.2) we have 

the linear manifold 
the stability co- 
(we shall denote it by 

acll = a6b = -2 1/2a,,, a,, = 6,, = 5a,,/<, 

(the remaining partial second-order derivatives are equal to zero). The conditions of 
positive definiteness of (PW)'are expressed by the inequalities 

aok> 0, aa+kl> 0, a,,aa8a,, > 0, alla33a34 (a44 - %3 >‘O 

the second and third of which do not hold. Therefore for the solutions (2.2) we have x = 2. 
For (2.3) we have 

a 11 = E (96t;OP - 7@)/(96&,‘), ad4 = --7E~V(485~~) 

and the sufficient conditions are expressed by the inequalities 

a,,> 0, aa? > 0, %I(3442 > 0, adw4,3 > 0 

the first of which does not hold. Therefore for these motions we have x = 2. 
This in the case of the motions (2.2) and (2.3) Routh's theorem does not lead to a 

definite conclusion concerning the stability. 
For the solutions (2.4) we have 

a - E (144c04 + 7~~)1(1445,,'), II - ass = 35&~'/(288&,~) 

and the conditions of stability reduce to the inequalities 

a,,> 0, .a,, > 0, =33> 0 (2.5) 

which are always satisfied and we have for them x = 0: The motions (2.4) are stable with 
respect to the variables 11, 5, ai, n', c', u', o, (i = 1, 2, 3). 

3. Calculating the terms of the 'expansion (1.1) for the bodies in the form of a cone 
and cylinder, of radii a and heights 26 and If% respectively (the height of the bodies is 
determined fromtheconditions 'A = B = C, and fn dimensionless form a = 1), we obtain the 
following expressions for the modified potential energy of these bodies: 

W=- E [f + U3(31~JU3a) es] + II, for a cone 

J+'=-_E [++I1 5U32(66,&~)-3 811 +II, for a cylinder 

The equations of stationary motions of the cone and cylinder SW = 0 yield the following 
families of solutions: 

n =0, 5 = cO=N, u3=fi (3.1) 

n = 0. 5 = c,, = N, us = Till/c (3.2). 
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for the cone, and 

11 = IJ, <=j,=N I-GO‘ 
i I)’ - +=+I (3.3) 

11=u, +j,=N(1- &D1), u,=o (3.4) 

11=0, &+,=N(l- $&D1), u3=i g (3.5) 
. 

D, = AWM” 

for the cylinder. 
The solutions 

of mass move along 
(3.1)-(3.5) correspond to the stationary motions of the bodies whose centres 
a circular orbit and the bodies themselves are in equilbrium with respect 

to the OEng system of coordinates. For the solutions (3.1), (3.3) the vector OG is 
directed along the axis of symmetry of the bodies, and for (3.4) it is perpendicular to the 
axis of symmetry. We note that in the case of (3.1) the cone points towards the centre of 
attraction with its apex when .a8 = -i, and with its base when ug = 1. The solutions (3.2), 
(3.5) are such that the vector OG passes across the boundary circumference of the base. 

bet us investigate the stability of the motions (3.1)-(3.5). We have the following ex- 
pressions for the second-order partial derivatives of the function W for the cone, for the 
values (3.11, (3.2): 

for the solutions (3.1) and 

for the solutions (3.2), and we have a22 = (azW/ag2)0 = E/t&S for all solutions. The remaining 
second-order partial derivatives are equal to zero. 

The conditions of stability for solutions (3.1), (3.2) reduce to the inequalities (2.5), 
the first two of which hold and the last of which does not hold for solution (3.1) when uQ = I, 
and for (3.2) when US -= -A/1/5. This leads us to conclusion that the motions are unstable 

(x = I)? while the remaining motions (3.1), (3.2) are stable (x = 0) with respect to the 
variables 

rl? 5, US, rl ., 5', c., 01, 6&U 03 (3.6) 

We note that the stability and instability of the body in the form of a cone changes when 
it is rotated by 180" about the normal to the plane of the orbit. The result has no analogue 
for the usual satellite approximation. 

The second-order partial derivatives of the function W for a cylinder, for the values 
(3.3)-(3.51, are: 

for solutions (3.3), 

for solutions (3.4) and 

c,rCE 64Ob'-333~4 33Ed 
64050' ’ a33=-8:,5 

=E 5~LJ'+ 33e0 627E.a' a 
8.. 56050 ' 

a3s==- 196:# 

for solutions (3.51, and spp = (a’wjag, = a,, -b O(P) for all solutions, with the ,remaining 
second-order partial derivatives equal to zero. 

The conditions of stability for solutions (3.3)-(3.5) reduce to the inequalities (2.5), 
the first two of which hold, and the last of which does not hold for solutions (3.3) and (3.4). 
Therefore, we can conclude that these motions are unstable (x = I), and the motions (3.5) are 
stable (x = 0) with respect to the variables (3.6). 

It should be noted that even a small deviation from the linear dimensions of the bodies 
(e.g. the height of the cone) can lead to the appearance of new dynamic effects not included 
in the present formulation oftlieproblem. 
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EQUATIONS OF MOTION OF A CARRIER SUPPORTING DYNAMICALLY UNBA~NCED AND 
ASYMMETRIC FLYWHEELS IN AN INERTIAL MEDIUM* 

V.A. KONOPLEV 

Themethodsdescxibedin /l-5/ are used to derive the equations of motion 
of a body supporting dynamically unbalanced and asymmetric flywheels in 
an inertial fluid. The equations combine the accuracy of inclusion of 
inertial effects with the compactnessofmatrix notation, with the con- 
venience of constructing the computational procedures based on modern 
matrix processing facilities of the digital computer without resorting 
to the scalar equations. The equations obtained are used to formulate 
a problem of programmed rotation of flywheels, ensuring that the carrier 
moves as required, provided it exists. 

The equations obtained can be used for a straightforward investigation 
of the motion of a vibrating table under the condition that the position, 
the inertial characteristics and the modes of motion are all known, and 
for determining the above characteristics which ensure that the table 
moves in a prescribed manner (the control problem). 

We shall use, for simplicity, a single symbol I?* = (Ok, [e&l) for all rigid bodies of the 
system, and for the associated Cartesian systems coordinate with the origin Okand an ortho- 

normed basis, lekl = (elk, es’. esk), elk = II 1. 0, 0 IITI,e2k = Ii 0, 1, 0 IIT, eak = II 0, 0, 1 III, Tea that E, will 

denote the inertial coordinate system, f?, isthebody of the carrier, E, (p = 2,3,.:‘.,njthe 
instruments under test installed on E,, E, (s = 2,3, . . . . m) are the flywheels, including those 
which may be mounted on the instruments under test. 

The dynamic screw of such a system is described in E, in the form 

Here Zll is the same screw in E,; L,O* = T,~"[C,'1 is a 
/l/, and 

(6 X 6)-matrix situated in E, 

where <O,@)O is a skew symmetric (3 X 3) matrix generated by the position vector iI,@@ of 

0, in B,, on the basis [e"l; E is a unit (3 X 3) matrix, ,c,O = C8 W C, (6,) C, f~) is a (3 X 3) 
matrix of the orientation [.@I on [d, z([e'] = (@I C,o) is the simplest (3 X 3) matrix of 
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